Aerospace Engineering

Leonardo da Vinci wrote, "Once you have tasted flight, you will forever walk the earth with your eyes turned skyward. For there you have been, and there you will always long to return." Perhaps, like da Vinci, you've always been obsessed with airborne machines: Gliders and lighterthan-air craft. Fixed-wing airplanes and jets. Autogyros and helicopters. Or even rockets, satellites, and spacecraft. Aeronautical engineers generally design aircraft to fly within the Earth's atmosphere, while astronautical engineers design the technology for spacecraft to fly beyond the atmosphere. Either way, the sky's the limit.

Major Program

At Berkeley Engineering, we offer a modern aerospace engineering major that combines comprehensive topical coverage, technical rigor and practical relevance. This major has been designed from the ground up for students who aspire to become leaders in an emerging era of aerospace technologies, including sustainable aviation, autonomous flight and space exploration. With a UC Berkeley aerospace engineering degree, you can find employment in industry — such as multinational corporations that design and manufacture aerospace systems at scale, or mid-size and small private companies that develop targeted technologies — or in federal government agencies such as NASA, the FAA or federal defense organizations.

The aerospace engineering degree program began instruction with an inaugural freshman class in Fall 2022.

Minor Program

To declare your intention to pursue the Aerospace Minor, please use your Berkeley email address/calnet ID and fill out the following application to declare (https://docs.google.com/forms/d/ e/1FAIpQLSc5GQhRPAoxKuc0rm2_Dylp1hlPI3P84Pt78IYL6NL_2SdWoQ/ viewform/?usp=sf_link) form.

Non-Mechanical Engineering major students can declare their intention to complete the minor after completing prerequisite courses MEC ENG C85 Introduction to Solid Mechanics, MEC ENG 106 Fluid Mechanics, and MEC ENG 132 Dynamic Systems and Feedback. Mechanical Engineering majors are allowed to overlap prerequisite courses. Students must have a minimum overall grade-point average of 3.0, as well as a minimum grade-point average of 3.0 in the prerequisite courses, in order to be admitted to the minor program.

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

General Guidelines

- 1. All technical courses taken in satisfaction of major requirements must be taken for a letter grade.
- 2. A minimum overall grade point average (GPA) of 2.0 is required for all work undertaken at UC Berkeley.
- 3. A minimum GPA of 2.0 is required for all upper division technical courses taken in satisfaction of major requirements.

For information regarding residence requirements and unit requirements, please see the College Requirements tab.

For a detailed plan of study by year and semester, please see the Plan of Study tab.

Lower Division Requirements

AERO ENG 1	Aerospace Engineering 1 Seminar	1
AERO ENG 2	Aerospace Engineering 2 Seminar	1
AERO ENG 10	Introduction to Aerospace Engineering Design	4
CIV ENG C30	Introduction to Solid Mechanics	3
or MEC ENG C	Introduction to Solid Mechanics	
COMPSCI 61A	The Structure and Interpretation of Computer Programs	4
or ENGIN 7	Introduction to Computer Programming for Scientiand Engineers	sts
ENGIN 40	Engineering Thermodynamics	3-4
or MEC ENG 4	Thermodynamics	
MAT SCI 45	Properties of Materials	3
MAT SCI 45L	Properties of Materials Laboratory	1
MATH 1A	Calculus	4
MATH 1B	Calculus	4
MATH 53	Multivariable Calculus	4
MATH 54	Linear Algebra and Differential Equations (recommended)	4
or PHYSICS 8	Introduction to Mathematical Physics	
PHYSICS 7A	Physics for Scientists and Engineers	4
PHYSICS 7B	Physics for Scientists and Engineers	4
Science Elective	1	4-5

¹ Choose one of the following: ASTRON 7A, ASTRON 10; BIOLOGY 1A + BIOLOGY 1AL, BIOLOGY 1B; CHEM 1A + CHEM 1AL, CHEM 1B, CHEM 3A + CHEM 3AL, CHEM 3B + CHEM 3BL, CHEM 4A, CHEM 4B; MCELLBI 32; PHYSICS 7C. Some of these courses require prerequisites and would therefore be more appropriately taken in a later semester.

Upper Division Requirements

Students must complete the Upper Division Core Requirements and four Technical Electives.

Upper Division Core Requirements

AERO ENG 100	Course Not Available	
CIV ENG 93	Engineering Data Analysis	3-4
or DATA C100	Principles & Techniques of Data Science	
or ENGIN 178	Statistics and Data Science for Engineers	
CIV ENG 126	Engineering Dynamics and Vibrations	3
or MEC ENG 1	Dengineering Mechanics II	
MEC ENG 100	Electronics for the Internet of Things	4
or EL ENG 120	OSignals and Systems	
or EECS 149		
	Systems	
MEC ENG 103	Experimentation and Measurements	4
MEC ENG 106	Fluid Mechanics	3
MEC ENG 132	Dynamic Systems and Feedback ¹	3
or EL ENG C12Beedback Control Systems		

or MEC ENG	CF Bedback Control Systems		
MEC ENG 163	Engineering Aerodynamics	3	

¹ MEC ENG 132 is only offered during fall semesters.

Technical Electives

Students must take four elective courses total from the areas listed below, two from one area and an additional two from another.

Communications Systems

oominamoutione	, ejetenne	
COMPSCI 168	Introduction to the Internet: Architecture and Protocols	4
EL ENG 117	Electromagnetic Fields and Waves	4
EL ENG 121	Introduction to Digital Communication Systems	4
EL ENG 122	Introduction to Communication Networks	4
EL ENG 142	Integrated Circuits for Communications	4
Computational T	ools	
CIV ENG C133	Engineering Analysis Using the Finite Element Method	3
or MEC ENG C	Engineering Analysis Using the Finite Element Met	hod
ENGIN 150	Basic Modeling and Simulation Tools for Industrial Research Applications	4
IND ENG 174	Simulation for Enterprise-Scale Systems	3
NUC ENG 155	Introduction to Numerical Simulations in Radiation Transport	3
Control, Autonor	my, & Artificial Intelligence	
COMPSCI 188	Introduction to Artificial Intelligence	4
COMPSCI 189	Introduction to Machine Learning	4
EL ENG/BIO ENG/MEC ENG C106A	Introduction to Robotics	4
EL ENG/BIO ENG/MEC ENG C106B	Robotic Manipulation and Interaction	4
IND ENG 142	Introduction to Machine Learning and Data Analytics	3
MEC ENG 136	Dynamics and Control of Autonomous Flight	3
Design		
EL ENG 192	Mechatronic Design Laboratory	4
MEC ENG 135	Design of Microprocessor-Based Mechanical Systems	4
Dynamical Syste	ms	
MEC ENG 170	Engineering Mechanics III	3
MEC ENG/AERO ENG C162	Introduction to Flight Mechanics	3
MEC ENG 175	Intermediate Dynamics	3
Humans and Aut	omation	
CIV ENG 190	Special Topics in Civil and Environmental Engineering ((Aviation control topics))	1-4
COG SCI 131	Computational Models of Cognition	4
COMPSCI 160	User Interface Design and Development	4
IND ENG 170	Industrial Design and Human Factors	3
Manufacturing		
IND ENG 130	Methods of Manufacturing Improvement	3
MAT SCI 121	Metals Processing	3

MEC ENG 122	Processing of Materials in Manufacturing	3
MEC ENG 127 Introduction to Composite Materials		3
Materials		
MAT SCI 102	Bonding, Crystallography, and Crystal Defects	3
MAT SCI 104	Materials Characterization	4
& 104L	and Materials Characterization Laboratory	
MAT SCI 112	Corrosion (Chemical Properties)	3
MAT SCI 113	Mechanical Behavior of Engineering Materials	3
MAT SCI 136	Materials in Energy Technologies	4
MEC ENG 108	Mechanical Behavior of Engineering Materials	4
MEC ENG 127	Introduction to Composite Materials	3
NUC ENG 120	Nuclear Materials	4
Mechanics		
CIV ENG 132	Applied Structural Mechanics	3
MEC ENG/AERO ENG C184/ CIV ENG C138	Flight Vehicle Structures and Aeroelasticity	3
MEC ENG 185	Introduction to Continuum Mechanics	3
Operations and	Project Management	
CIV ENG 167	Engineering Project Management	3
IND ENG 120	Principles of Engineering Economics	3
IND ENG 130	Methods of Manufacturing Improvement	3
IND ENG 150	Production Systems Analysis	3
IND ENG 153	Logistics Network Design and Supply Chain	3
	Management	-
Optimization		
EECS 127	Optimization Models in Engineering	4
IND ENG 160	Nonlinear and Discrete Optimization	3
IND ENG 162	Linear Programming and Network Flows	3
IND ENG 164	Introduction to Optimization Modeling	3
Power		
CIV ENG 190	Special Topics in Civil and Environmental Engineering ((Power topics))	1-4
MEC ENG 140	Combustion Processes	3
MEC ENG 146	Energy Conversion Principles	3
MEC ENG 154	Thermophysics for Applications	3
NUC ENG 150	Introduction to Nuclear Reactor Theory	4
NUC ENG 161	Nuclear Power Engineering	4
Propulsion		
AERO ENG 143	Course Not Available	
MEC ENG 109	Heat Transfer	3
MEC ENG 140	Combustion Processes	3
MEC ENG 151A	Conductive and Radiative Transport	3
MEC ENG 151B	Convective Transport and Computational Methods	3
MEC ENG 154	Thermophysics for Applications	3
Risk Manageme	nt	
CIV ENG 193	Engineering Risk Analysis	3
IND ENG 165	Engineering Statistics, Quality Control, and Forecasting	4
IND ENG 166	Decision Analytics	3
IND ENG 172	Probability and Risk Analysis for Engineers	4
NUC ENG 167	Risk-Informed Design for Advanced Nuclear	3
	Systems	

NUC ENG 175	Methods of Risk Analysis	3
Space Technolog	gies	
NUC ENG 140	Course Not Available	
NUC ENG 162	Radiation Biophysics and Dosimetry	3

Students can receive an aerospace minor by successfully completing the following courses:

I	MEC ENG 127	Introduction to Composite Materials	3
I	MEC ENG 136	Dynamics and Control of Autonomous Flight	3
		Introduction to Flight Mechanics	3
	ENG C162		
	or MEC ENG 1	Bigineering Aerodynamics	

Prequisite Courses

riequisite oour	505	
MEC ENG C85	Introduction to Solid Mechanics	3
MEC ENG 106	Fluid Mechanics	3
MEC ENG 132	Dynamic Systems and Feedback	3

Non-Mechanical Engineering majors can declare their intention to complete the minor after completing prerequisite courses MEC ENG C85, MEC ENG 106, and MEC ENG 132. Mechanical Engineering majors are allowed to overlap prerequisite courses.

Students must have a minimum overall grade-point average of 3.0, as well as a minimum grade-point average of 3.0 in the prerequisite courses, in order to be admitted to the minor program. Students outside of the Mechanical Engineering major must take all 6 courses (the pre-requisite courses and the minor courses) to complete the minor. Students must have a minimum of 2.00 grade-point average in the minor courses at graduation.

Students in the College of Engineering must complete no fewer than 120 semester units with the following provisions:

- 1. Completion of the requirements of one engineering major program (https://engineering.berkeley.edu/students/undergraduate-guide/ degree-requirements/major-programs/) of study.
- 2. A minimum overall grade point average of 2.00 (C average) and a minimum 2.00 grade point average in upper division technical coursework required of the major.
- 3. The final 30 units and two semesters must be completed in residence in the College of Engineering on the Berkeley campus.
- All technical courses (math, science, and engineering) that can fulfill requirements for the student's major must be taken on a letter graded basis (unless they are only offered P/NP).
- 5. Entering freshmen are allowed a maximum of eight semesters to complete their degree requirements. Entering junior transfers are allowed five semesters to complete their degree requirements. Summer terms are optional and do not count toward the maximum. Students are responsible for planning and satisfactorily completing all graduation requirements within the maximum allowable semesters.
- Adhere to all college policies and procedures (https:// engineering.berkeley.edu/students/undergraduate-guide/policiesprocedures/) as they complete degree requirements.
- 7. Complete lower division technical courses before enrolling in upper division technical courses.

Humanities and Social Sciences (H/SS) Requirement

To promote a rich and varied educational experience outside of the technical requirements for each major, the College of Engineering has a six-course Humanities and Social Sciences breadth requirement (http://engineering.berkeley.edu/student-services/degree-requirements/ humanities-and-social-sciences/), which must be completed to graduate. This requirement, built into all the engineering programs of study, includes two Reading and Composition courses (R&C), and four additional courses within which a number of specific conditions must be satisfied. See the humanities and social sciences (https://engineering.berkeley.edu/students/undergraduate-guide/degree-requirements/humanities-and-social-sciences/) section of our website for details.

Class Schedule Requirements

- Minimum units per semester: 12.0
- Maximum units per semester: 20.5
- Minimum technical courses: College of Engineering undergraduates must include at least two letter graded technical courses (of at least 3 units each) in their semester program. Every semester students are expected to make satisfactory progress in their declared major. Satisfactory progress is determined by the student's Engineering Student Services Advisor. (Note: For most majors, normal progress (https://engineering.berkeley.edu/academics/undergraduate-guide/ policies-procedures/scholarship-progress/#ac12282) will require enrolling in 3-4 technical courses required of your current major each semester.) Students who are not in compliance with this policy by the end of the fifth week of the semester are subject to a registration block that will delay enrollment for the following semester.
- All technical courses (math, science, engineering) that satisfy requirements for the major must be taken on a letter-graded basis (unless only offered as P/NP).

Minimum Academic Requirements

- Students must have a minimum overall and semester grade point average of 2.00 (C average). Students will be subject to dismissal from the University if during any fall or spring semester their overall UC GPA falls below a 2.00, or their semester GPA is less than 2.00.
- Students must achieve a minimum grade point average of 2.00 (C average) in upper division technical courses required for the major curriculum each semester.
- A minimum overall grade point average of 2.00 and a minimum 2.00 grade point average in upper division technical course work required for the major are required to earn a Bachelor of Science in the College of Engineering.
- Students must make normal degree progress toward the Bachelor of Science degree and their officially declared major.

Unit Requirements

To earn a Bachelor of Science in Engineering, students must complete at least 120 semester units of courses subject to certain guidelines:

- Completion of the requirements of one engineering major program (https://engineering.berkeley.edu/students/undergraduate-guide/ degree-requirements/major-programs/) of study.
- A maximum of 16 units of special studies coursework (courses numbered 97, 98, 99, 197, 198, or 199) is allowed to count towards

the B.S. degree, and no more than 4 units in any single term can be counted.

- · A maximum of 4 units of physical education from any school attended will count towards the 120 units.
- Passed (P) grades may account for no more than one third of the total units completed at UC Berkeley, Fall Program for Freshmen (FPF), UC Education Abroad Program (UCEAP), or UC Berkeley Washington Program (UCDC) toward the 120 overall minimum unit requirement. Transfer credit is not factored into the limit. This includes transfer units from outside of the UC system, other UC campuses, credit-bearing exams, as well as UC Berkeley Extension XB units.

Normal Progress

Students in the College of Engineering must enroll in a full-time program and make normal progress (https://engineering.berkeley.edu/students/ undergraduate-guide/policies-procedures/scholarship-progress/ #ac12282) each semester toward their declared major. Students who fail to achieve normal academic progress shall be subject to dismissal. (Note: Students with official accommodations established by the Disabled Students' Program, with health or family issues, or with other reasons deemed appropriate by the dean may petition for an exception to normal progress rules.)

University of California Requirements

Entry Level Writing (http://guide.berkeley.edu/undergraduate/education/ #earningyourdegreetext)

All students who will enter the University of California as freshmen must demonstrate their command of the English language by satisfying the Entry Level Writing Requirement (ELWR). The UC Entry Level Writing Requirement website (https://admission.universityofcalifornia.edu/ elwr/) provides information on how to satisfy the requirement.

American History and American Institutions (http://guide.berkeley.edu/ undergraduate/education/#earningyourdegreetext)

The American History and Institutions (AH&I) requirements are based on the principle that a US resident graduated from an American university should have an understanding of the history and governmental institutions of the United States.

Campus Requirement

American Cultures (http://guide.berkeley.edu/undergraduate/education/ #earningyourdegreetext)

The American Cultures requirement is a Berkeley campus requirement, one that all undergraduate students at Berkeley need to pass in order to graduate. You satisfy the requirement by passing, with a grade not lower than C- or P, an American Cultures course. You may take an American Cultures course any time during your undergraduate career at Berkeley. The requirement was instituted in 1991 to introduce students to the diverse cultures of the United States through a comparative framework. Courses are offered in more than fifty departments in many different disciplines at both the lower and upper division level.

For more detailed information regarding the courses listed below (e.g., elective information, GPA requirements, etc.), please see the College Requirements and Major Requirements tabs.

Fall Units

	16-18
Course ²	
Reading & Composition Part A	4
Science Elective ¹	3-5
AERO ENG 1	1

Total Units: 16-18

MATH 1A

MAT SCI 45

MAT SCI 45L

Freshman

Spring Units	
MATH 1B	4
PHYSICS 7A	4
ENGIN 7 or COMPSCI 61A	4
AERO ENG 2	1
Reading & Composition Part B Course ²	4
	17

Total Units: 17

Sophomore

Fall Units	
MATH 53	4
PHYSICS 7B	4
AERO ENG 10	4
Humanities/Social Sciences Course ²	3-4
	15-16

Total Units: 15-16

Sophomore

Spring Units	
PHYSICS 89 or MATH 54 (recommended)	4
CIV ENG C30 or MEC ENG C85	3
ENGIN 40 or MEC ENG 40	3-4
Humanities/Social Sciences Course ²	3-4
	13-15

Total Units: 13-15

Junior Fall Units MEC ENG 106 3 CIV ENG 126 or MEC ENG 104 3 EL ENG C128, MEC ENG C134, or 3-4 MEC ENG 132

Freshman

4

3

1

Humanities/Social Sciences Course ²	3-4
	12-14

Total Units: 12-14

	Junior	
Spring Units		
CIV ENG 93, DATA C100, or ENGIN 178	3-4	
MEC ENG 100, EL ENG 120, or EECS 149	4	
MEC ENG 163	3	
Humanities/Social Sciences Course ²	3-4	
	13-15	

Total Units: 13-15

	Senior
Fall Units	5
MEC ENG 103	4
Technical Elective 1 ³	3-4
Technical Elective 2 ³	3-4
Free Elective	2-4
	12-16

Total Units: 12-16

	Senior
Spring Units	5
AERO ENG 100	4
Technical Elective 3 ³	3-4
Technical Elective 4 ³	3-4
Free Elective	2-4
	12-16

Total Units: 12-16

Total Units: 120 (minimum)

- ¹ Choose one of the following: ASTRON 7A, ASTRON 10; BIOLOGY 1A + BIOLOGY 1AL, BIOLOGY 1B; CHEM 1A + CHEM 1AL, CHEM 1B, CHEM 3A + CHEM 3AL, CHEM 3B + CHEM 3BL, CHEM 4A, CHEM 4B; MCELLBI 32; PHYSICS 7C. Some of these courses require prerequisites and would therefore be more appropriately taken in a later semester.
- ² The Humanities/Social Sciences (H/SS) requirement includes two approved Reading & Composition (R&C) courses and four additional approved courses, with which a number of specific conditions must be satisfied. R&C courses must be taken for a letter grade (C- or better required). The first half (R&C Part A) must be completed by the end of the freshman year; the second half (R&C Part B) must be completed by no later than the end of the sophomore year. The remaining courses may be taken at any time during the program. See engineering.berkeley.edu/hss for complete details and a list of approved courses.
- ³ Students must take four technical elective courses total: two from one of the areas listed on the Major Requirements page and two from another.